A FIRRTL Backend for the Calyx
High-Level Accelerator Compilation Infrastructure

Griffin Berlstein

Cornell University

Ithaca, NY, USA
griffin@cs.cornell.edu

Ayaka Yorihiro

Cornell University

Ithaca, NY, USA
ayaka@cs.cornell.edu

Abstract—We build a new translation from Calyx, an open-
source intermediate language for compiling high-level programs
into hardware accelerators, to FIRRTL, an intermediate represen-
tation used in the open-source Chisel and CIRCT projects. Calyx
previously targeted Verilog as a de facto intermediate language
for hardware description; our new backend avoids the complexity
of targeting Verilog source code and requires important gener-
alizations for the Calyx compiler. We demonstrate the technical
challenges endemic to bridging high-level and low-level hardware
compiler infrastructures.

Index Terms—Intermediate Language, Accelerator Design,
Compilers

I. INTRODUCTION

Intermediate languages (ILs) for hardware design promise
better interoperability between diverse tools: languages, EDA
toolchains, testing frameworks, simulators, formal verifiers,
and so on. However, these ILs have generally focused on
register-transfer level (RTL) design: traditional, low-level
hardware specifications. Higher-level compilers, such as high-
level synthesis (HLS) tools and accelerator design language
(ADL) compilers, typically treat Verilog as a de facto 1L
for generating hardware. While it is a practical choice for
interacting with legacy EDA flows, Verilog makes for a
cumbersome compilation target—and it leaves HLS tools out
from the interoperable ecosystems that these ILs can offer.

This paper connects two existing, open-source compiler
infrastructures and ILs: FIRRTL [1], a low-level RTL IL, and
Calyx [2], a high-level IL that supports compilers from domain-
specific languages. Until now, Calyx has only targeted Verilog,
making FIRRTL Calyx’s second backend. Our primary goal
is to demonstrate the potential advantages and engineering
challenges for high-level compilers when they opt into a post-
Verilog, IL-based hardware design ecosystem. Concretely, our
backend brings these benefits to the Calyx compiler:

o Calyx programs can exploit a new pool of FIRRTL-based

tooling, including the FIRRTL compiler’s optimizations
and new simulation infrastructure [3].

« The new backend clarifies the semantics of Calyx’s low-
level program representation, disentangling it from the
nuances of Verilog semantics. We also reveal common-
alities between the ILs for Calyx and FIRRTL that may
apply to other high-level hardware compilers.

e By generalizing the Calyx compiler, we highlight its
implicit dependence on Verilog for primitives, built-in

University of California, Berkeley

laeufer @eecs.berkeley.edu

Kevin Laeufer Adrian Sampson
Cornell University
Ithaca, NY, USA

asampson@cs.cornell.edu

Berkeley, CA, USA

hardware modules that all programs use as elementary
building blocks, and show how to instantiate the same
role in a Verilog-independent way.

Broadly, this paper advocates for further investment in con-
nections between low-level and high-level hardware tooling.
By leveraging the complementary strengths in different open-
source projects, the community can build better end-to-end
tooling that sidesteps Verilog unless it is strictly necessary to
interface with proprietary tools. The result will be better inter-
operability, clearer semantics, and simpler, faster compilers.

This short paper highlights the three main technical chal-
lenges in this new backend: (1) the core language translation
from Calyx’s IL to FIRRTL, highlighting the similarities and
differences between the two languages; (2) our primitive library,
which entailed elaborating parameterized descriptions of basic
hardware units; and (3) an automated testing infrastructure,
which makes it possible to execute high-level accelerator
designs without manual testbench effort.

II. CORE LANGUAGE FEATURES

The Calyx compiler uses a single intermediate language (IL)
to translate high-level, control-based programs to low-level,
mostly structural code. Like in FIRRTL, this low-level subset of
the IL admits a straightforward translation to Verilog and other
HDLs. The core mechanism in our new backend is a translation
from this low-level form of the Calyx IL into FIRRTL.

The main construct in low-level Calyx IL is a guarded
assignment, of this form:

celll.portl = guard ? cell2.port2;

where guard is a Boolean expression over port values. Ports
are defined whenever exactly one such assignment’s guard is
1. Components in Calyx are analogous to modules in Verilog
or FIRRTL, and they consist only of cell instantiations and a
single list of these guarded assignments. Our translation maps
guarded assignments onto FIRRTL conditional statements:
celll.portl is invalid
celll.portl <= UInt(0)
when guard:

celll.portl <= cell2.port2
We use FIRRTL'’s is invalid initialization to reflect Calyx’s
semantics: each port may be written by exactly one guarded
assignment; otherwise, it is undefined. We also initialize
ports to zero to reflect Calyx’s semantics for @control ports.



Simultaneous assignments to the same port are an error in
Calyx, so a cascade of FIRRTL when statements suffices for all
legal Calyx programs. Because it contains when, the generated
code is not within the LoFIRRTL subset: we use the FIRRTL
compiler to generate muxes for the conditional behavior.

The rest of the translation maps Calyx components onto
FIRRTL modules, the ports in Calyx signatures onto FIRRTL
input and output declarations, and Calyx cell instantiations
onto FIRRTL -nst declarations. Calyx does not have a rich
type system for values: all signals are “plain” bit vectors. Our
backend, therefore, only uses the UInt<n> types in FIRRTL.

III. PRIMITIVES

A key difference between RTL descriptions and any high-
level hardware compiler is the need for a library of primitives:
basic building blocks that are implemented outside the language.
Verilog and FIRRTL have built-in operators for adders, registers,
memories, and so on; any more sophisticated subcircuits must
come from user libraries. In Calyx, even extremely basic
constructs—including registers, adders, and bitwise logical
operations—come from a standard library of primitives. And,
as in any high-level accelerator compiler, there are common
constructs that do not make sense to implement within the high-
level framework itself: for example, Calyx’s standard primitive
library includes a basic pipelined multiplier and divider. These
primitives are critical to the compilation of any Calyx program.

Traditionally, these Calyx primitives have been implemented
in parameterized Verilog. For example, Calyx’s register primi-
tives, std_reg, has a parameter WIDTH to dictate the size of
the register: the declaration reg = std_reg(32); instantiates
a 32-bit register.

Our new backend requires a new approach to the primitive
library. We implement two options: the existing Verilog
implementations and a new primitive library written in FIRRTL.

The first route uses FIRRTL’s extmodule keyword, which
lets FIRRTL code interoperate with modules in other HDLs.
Our backend iterates over all cell instantiations to produce a set
of unique primitive instantiations. It uses the port and parameter
information for each unique instantiation to produce a extmod-
ule declaration. Finally, each cell instantiation translates to a
FIRRTL instantiation of the corresponding extmodule.

The second alternative produces “pure” FIRRTL code. The
challenge here is that FIRRTL is monomorphic: i.e., there are
no compile-time parameters as in Verilog. We therefore cannot
directly translate Calyx’s primitives into FIRRTL modules.
Instead, our primitive implementations are metaprogramming
templates: FIRRTL code containing names to be substituted
with parameter values. We implement a special-purpose Calyx
“backend” that outputs in JSON the names and parameters for
every unique primitive instantiation in a program. A separate
tool uses this JSON data to fill in the FIRRTL templates and
produce monomorphized FIRRTL modules.

In both cases, our new backend revealed the ways Calyx
has implicitly relied on Verilog parameters to make primitives
work. Our new metaprogramming approach is more general
and makes Calyx easier to port to other new backends.

TABLE I: Preliminary Results. T[ms] is simulation time in millisec-
onds, and S[KB] is the size of the emitted Verilog in kilobytes.

Benchmark Calyx FIRV FIRFIR
T[ms] S[KB] T[ms] S[KB] T[ms] S[KB]
3mm 69 194 37 115 34 101
bicg 7 101 5 64 5 50
symm 26 146 21 88 14 73
trmm 14 88 12 55 11 42

IV. TESTING INFRASTRUCTURE

Calyx automatically generates a simple testbench for every
program. This built-in testing functionality makes it easy to run
programs during development without expending the effort to
construct a custom test harness. While custom testbenches are a
critical part of traditional hardware development, they are often
unnecessary for high-level accelerator design, where programs
are typically straightforward input-to-output functions.

In our Verilog backend, this automated testbench assumes the
design maps all meaningful inputs and outputs to memories,
and it maps these memories onto on-disk files. The Calyx
compiler generates Verilog’s unsynthesizable readmemh and
writememh constructs, which most simulators support.

There is no analog in the FIRRTL ecosystem: LoadMem-
oryAnnotation and similar annotations existed in some
versions of the FIRRTL compiler, but they are supported in
neither the new CIRCT-based firtool compiler nor universally
in simulators [3]. Instead, our strategy is to expose the memories
outside of the generated FIRRTL code and rely on Verilog to
perform the file reads and writes.

A limitation of this approach is that we cannot simulate our
custom testbench (and test our generated FIRRTL designs) on
a simulator that does not support Verilog, such as ESSENT [3].
The lack of an official mechanism for reading/writing from
files in FIRRTL programs necessitates this workaround and
consequently hinders the creation of general cross-simulator
testbenches. While it may seem inconsequential, this absence
creates a genuine barrier for high-level accelerator design flows
targeting FIRRTL and means Verilog unfortunately enjoys a
convenience advantage here. We suggest further effort in the
FIRRTL ecosystem to close this gap and make it a more
convenient target for high-level accelerator design.

V. EVALUATION

We compile Calyx programs to FIRRTL, use the FIRRTL
compiler 1.6 to generate Verilog, and use Verilator 5.006 to
simulate the final design. We compare against the same Calyx
program compiled directly to Verilog, and ensure equivalence.

Compiling through FIRRTL can both add overhead and
enable new optimizations. We quantify the simulation perfor-
mance among the different compilation routes. Table I compares
(1) the original Calyx-to-Verilog backend (Calyx), (2) our
new FIRRTL backend with Verilog primitives (FIRy ), (3)
our FIRRTL backend with FIRRTL primitives (FIRr;r). We
measure the wall-clock simulation time and the total size of the
generated code. The FIRRTL-compiled designs were simulated
faster than the Calyx-compiled designs. Also, FIRpr yields
the smallest Verilog file in all benchmarks. Our backend is
open-source in Calyx [4], and our evaluation is public [5].



(1]

[2]

(3]

[4

—

(51

REFERENCES

A. M. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A. Magyar, D. Kim,
C. Schmidt, C. Markley, J. Lawson, and J. Bachrach, “Reusability is
FIRRTL ground: Hardware construction languages, compiler frameworks,
and transformations,” in IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), 2017.

R. Nigam, S. Thomas, Z. Li, and A. Sampson, “A compiler infrastructure
for accelerator generators,” in ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), 2021.

S. Beamer, T. Nijssen, K. Pandian, and K. Zhang, “ESSENT: A
high-performance RTL simulator,” in Workshop on Open-Source EDA
Technology (WOSET), 2021.

The Calyx Project. (2024) Calyx. [Online]. Available: https:/github.com/
calyxir/calyx

“Calyx-FIRRTL evaluation,” 2024. [Online]. Available: https://github.
com/cucapra/calyx-firrtl-evaluation


https://github.com/calyxir/calyx
https://github.com/calyxir/calyx
https://github.com/cucapra/calyx-firrtl-evaluation
https://github.com/cucapra/calyx-firrtl-evaluation

	Introduction
	Core Language Features
	Primitives
	Testing Infrastructure
	Evaluation
	References

